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Direct calculation of the boundary S-matrix for the open 
Heisenberg chain 

M T Grisarut, Luca Mezincescut and Rafael I Nepomechiet 
t Physics Department. Brandeis University, Waltham, MA 02254. USA 
$ Department of Physics, University of Miami. Coral Gables, FL 33124, USA 

Received 10 June 1994 

Abstract. We calculate the boundary S-matrix for the o p i  antiferromagnetic spin-! isotropic 
Heisenberg chain with boundary magnetic fields. Our approach, which starts from the model's 
Bethe-ansatz solution. is an extension of the Korepin-Andrei-Destri method. Our result agrees 
with the boundary S-matrix for the boundary sineGordon model with 6' -, Sa and with 'fixed' 
boundary conditions. 

1. Introduction 

In a (1 + 1)-dimensional theory with factorized scattering, the two-particle S-matrix, which 
depends on the rapidity difference A of the two particles and which we denote here by R(A), 
is constrained to satisfy the factorization (Yang-Baxter)  equation^ 

RtzG - A') RidA) Ru(A') = Ru(A') RidQ R d A  - A'). (1.1) 

For particles in an n-dimensional representation of some internal symmetry group, R(A) 
is a matrix acting in the tensor product space Cn @ C". Moreover, Rlz, R13, and R23 are 
matrices acting in C" @ Cn @ C", with Rlz = R C3 1, Ru = 1 8 R, etc (see, e.g., [l, 21 and 
references therein.) 

For a system with a boundary, the quantum-mechanical scattering of a particle with the 
boundary is described by a so-called boundary S-matrix, which we denote here by K ( A  , e).  
This is a matrix acting in the space C", which may depend on one or more parameters, 
which we denote collectively by 6, that characterize the interaction at the bound,ary. The 
condition that boundary scattering be compatible with factorization is [3-51 

where 

P, , (X@ y) = y 8 . x  for x ,  y E Cn. (1.4) . 
0305-4470195/041M7+19$19.50 0 1995 IOP Publishing Ltd 1027 
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Furthermore, we use the notation K1 = K @ 1, K2 = 1 @ K .  
Given R(h), equation (1.2) determines the general form of K ( h ,  5 )  up to a scalar factor, 

which is a function of h and 6. Such boundary S-matrices have been used to construct and 
to obtain the Bethe-ansatz solution for open integrable quantum spin chains [4-141. For 
these applications, what is important is the matrix shucture of K ( h ,  6); the scalar factor 
plays no significant role. Further applications of boundary S-matrices are reviewed in [E]. 

Recently, there has been interest [16-20] in determining the boundary S-matrices for 
physical excitations of integrable theories. This requires determining in particular the scalar 
factor of the boundary S-matrix, which contains information about possible boundary bound 
states, etc. 

One way to determine the scalar factor is the 'bootstrap' approach in addition to 
equation (1.2), one imposes on the boundary S-matrix the constraints of unitarity, boundary 
cross-unitarity 1181, and boundary bootstrap [16,18] (which in the context of spin chains 
is known as 'fusion' of boundary S-matrices [6]). These conditions determine the scalar 
factor up to a CDD-type of ambiguity. Evidently, this procedure is a generalization of the 
bootstrap approach for determining bulk S-matrices [l]. Ghoshal and Zamolodchikov [18] 
have determined in this manner the boundary S-matrix for the boundary sine-Gordon model. 

In this paper, we consider an alternative approach namely, to determine the boundary 
S-matrix directly from the 'microscopic' theory for the excitations-i.e. from the Bethe 
ansatz equations. In particular, we calculate in this way the boundary S-matrix for the 
physical excitations ('spinons') of the open antiferromagnetic spin-f Heisenberg chain with 
boundary magnetic fields. The Hamiltonian of the chain is given by 

M T Grisaru et a1 

where c are the usual Pauli matrices, and the real parameters & correspond to boundary 
magnetic fields. Although the bulk terms are SU(2) invariant, the boundary terms break 
this symmetry down to U(1). which is generated by 

(1.6) 

The Bethe-ansatz solution of this model is given in [4] and 1211. 
Our approach is a generalization to the case of systems with boundaries of the Korepin- 

Andrei-De& method 122,231, which was devised to calculate factorized bulk S-matrices for 
systems with periodic boundary conditions. A key ingredient is the quantization condition 
for a finite interval, which has recently been discussed by Fendley and Saleur 1241. Our 
result K(A,.$+) for the boundary S-matrix is the diagonal matrix (see equations (5.19). 
(5.30). (5.36)) 

where the scalar factor a(h, e+) is given by 
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Let us compare the above result with previous field theory results. The bulk S-matrix for 
the Heisenberg chain [25] coincides with the bulk S-matrix for the sineGordon model [l] 
in the limit D2 -+ 8x ,  which is the SU(Z)-invariant pointt. Therefore, we expect that the 
boundary S-matrix for the open Heisenberg chain with boundaxy magnetic fields, #equations 
(1.7), (1.8), should coincide with the boundary S-matrix of Ghoshal and Zamolodchikov [18] 
for the boundary sine-Gordon model with 8' + 8n and with 'fixed' boundary conditions. 
(For 'fixed' boundary conditions, the field theory and hence the boundary S-matrix are 
U(1) invariant.) We have verified that the two boundary S-matrices indeed coincide, up to 
a rapidity-independent scalar factor, and with some redefinitions of variablest. 

The bootstrap result of Ghoshal and Zmolodchikov for the boundary sineGordon model 
with 'fixed' boundary conditions has been verified using the physical Bethe-ansatz approach 
by Fendley and Saleur 1241. 

We now outline the contents of the paper. In section 2, we consider the problem of 
quantization on a finite interval. We begin by demonstrating that even the simplest of 
systems can exhibit interesting boundary S-matrices. Indeed, we re-analyse an example 
which is familiar to every student of quantum mechanics-a free non-relativistic particle- 
but with non-standard boundary conditions. This leads to a boundary S-matrix which is 
momentum dependent, and which has a pole that may correspond to a boundary bound 
state. We work out the quantization condition on a finite interval, and then discuss the 
generalization for factorized scattering. As already noted, this quantization condition is a 
key ingredient of the calculation of boundary S-matrices from the Bethe ansae. In section 3~ 
we analyse the Bethe-ansatz equations for the model (1.5) using the string hypothesis. In 
section 4, we study the ground state. In particular, we compute the root density to order 1 / N ,  
and calculate the surface energy. Although these results have been obtained previously [26], 
the calculations serve as a useful preparation for the study of excited states. Section 5 is 
the core of the paper. There we compute the density of roots and holes to order 1 / N  for 
excited states. With the help of the quantization condition, we then determine the boundary 
S-matrix. We also perform a non-trivial consistency check on our result. There is a brief 
discussion in section 6. At several points in sections 4 and 5, we must~approximate certain 
sums by integrals, being careful to keep terms of order 1 / N .  We derive an appropriate 
formula in the appendix with the help of the Euler-Maclaurin formula. 

2. Quantization on a finite interval 

2.1. Nonrelativistic scattering 

As a warm-up exercise, we first consider a free one-dimensional non-relativistic particle of 
mass m on the half-line x > 0. Usually one demands that the wavefunction @(x)  vanish at 
x = 0. This is a sufficient, but by no means necessary, condition for the probability current 
j ( x )  = ip(x)*a,@(x) to vanish at x = 0. We consider instead the more general (mixed 
Dirichlet-Neumann) boundary condition 

e 

d 
c@(x)  + - @ ( x )  = 0 dx 

at x = ~ O  (2.1) 

t Moreprecisely, the true S-"iCeS li = PR for the two models ax related by a unitary transformation. 
$ In the notation of 1181, 'fixed' boundary conditions corresponds to the case k = 0. Moreover, the isotropic limit 
is performed by rescaling F + A t  - H (here A (8ir/B2) - I) ,  and taking the limit A --t 0 with rapidity P = -io 
fixed. Our result for the boundary S-mauix is recovered by making the identifications e = xA and 6 = n(& - 4). 
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where c is a real parameter with dimension Iflength. This boundary condition also implies 
the vanishing of the probability current at x = 0, and is compatible with the self-adjointness 
of the Hamiltonian H = p2/2m.  Assuming energy eigenfunctions of the plane-wave form 

(2.2) 

M T Grisaru et a1 

@ p ( x )  = AeiPx + Be&”’ 

(we set fr = I), we can use the boundary condition (2.1) to eliminate A in terms of B; and 
we immediately obtain 

We conclude that the boundary S-matrix is given by 

(2.4) 

The pole at p = ic implies the existence (for c > 0 ) of a boundary bound state with energy 
E = -c2/2m. 

We remark that for c = 0, we have the Neumann boundary condition @’(O) = 0, and 
the wavefunction is 

@ J X )  - cos PX (2.5) 

while for c + CO, we have the Dirichlet boundary condition @(O) = 0, and the wavefunction 
is 

@&x) - sin px . (2.6) 

Wavefunctions with such properties have appeared in quantum impurity problems. (See, 
e.g., WI.) 

We next consider the problem of a free particle on the finite interval -L/2 < x < LIZ, 
with mixed Dirichlet-Neumann houndary conditions at both ends: 

d L 
2 c+@(x) + ,@(x) = 0 at x = k- . ~ . (2.7) 

Assuming again that the energy eigenfunctions are plane waves (2.2), and imposing the 
above boundary conditions, we see that p obeys the quantization condition 

ei2PL ~ - ( p )  ~ + ( p )  = 1 (2.8) 

where the boundary S-matrices K* are given by 

Of course, the momentum operator is not defined on a finite interval, and therefore p is not 
a momentum eigenvalue. Nevertheless, the energy is still given by E = p2 /2m.  

Finally, if we now turn on a reflectionless potential which is localized near x = 0, the 
quantization condition (2.8) is generalized to 

ei2pL ~ ( p ) ’  ~ - ( p )  ~ + ( p )  = 1 (2.10) 

where R ( p )  is the S-matrix for the potential. We shall now see that this formula has a 
straightforward generalization for factorized scattering. 
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2.2. Factorized scattering 

Consider a system of particles with factorized scattering on an interval of finite length L. 
Each particle has some rapidity A, and in general also carries internal quantum numbers, 
such as spin. We denote the energy of a particle by &(A), and we define p(A) by the 
expression for the momentum of a particle for the corresponding system with periodic 
boundary conditions. For the case of two such particles, with corresponding rapidities A, 
and A2, the quantization condition reads (in the notation used in equations (1.1)-(1.4)) 

ei2p(Al)L RIz(A1 - Az) KI (AI , 6-) RZI (AI + W KI (AI , {+) = 1 . (2.1 1) 

This quantization condition has recently been discussed in [24]. As is noted there, such a 
formula can be derived with the help of the Zamolodchikov-Faddeev algebra. 

3. Bethe ansatz and string hypothesis 

The Hamiltonian X for the open antiferromagnetic Heisenberg chain with boundary 
magnetic fields is given by equation (1.5). The simultaneous eigenstates of 7-1 and SL 
have been determined by both the coordinate 1211 and algebraic [4] Bethe ansatz. In the 
latter approach, one constructs certain creation and deshuction operators, B(A) and C(A), 
respectively; the eigenstates are given by 

B(A1) B(Az) . . . &AM) 0' (3.1) 

where o+ is the ferromagnetic vacuum state with all spins up, 

C(A) W+ = 0 (3.2) 

and {Aa)  satisfy the Bethe-ansatz (BA) equations 

- - fi (A, - Ag +'> (A, + A# + i) 
#=1 a - A g - 1  L-I-Ag-i 
Bieu 

a =  1, ..., M. 

The corresponding energy eigenvalues are given by 

(3.3) 

(3.4) 

(plus terms that are independent of {An]). and the corresponding Si eigenvalues are given 
by 

N Si = - - M. 
2 (3.5) 



1032 M T Grisaru et a1 

The BA equations can be written more compactly as 

where 

We rest 

(3.7) 

t the solutions of 

Re(A,)>O A , # O , c o .  (3.8) 

: BA equations as follows: 

Within the coordinate Bethe-ansatz approach, these restrictions can be understood by 
examining the Bethe wavefunction. Alcaraz et a1 [21] write the wavefunction in terms 
of momenta &), which are related to our rapidities [Au} by exp(ik,) = (Am + ;)/(Aa - 4). 
Because of the periodicity Re@,) + Re@,) -+ 2n of the wavefunction, one can make the 
restriction -n < Re&) < n. Moreover, changing the sign of (any one) k, results in 
a change of sign of the wavefunction, and so does not lead to a new independent Bethe 
state. Thus, we can make the further restriction 0 < Re&) ,< n. Finally, one can 
verify that the wavefunction vanishes identically for k, = 0, n. Translating the restrictions 
0 < Re&) < n , k, f 0, n in terms of A, leads to equation (3.8) above. See also 
[9,21,24,26,28]. 

We adopt the 'string hypothesis', which states that in the thermodynamic (N -+ co) 
limit, all the solutions are collections of Mn strings of length n of the form (for Mn > 0) 

where j = 1,. .. , n ;  01 = 1,. .. , M,,; n = 1, ..., CO; and the centres A; are real and 
non-negative. The total number of A variables is M = E:, nM,. 

Implementing this hypothesis in the BA equations (3.6), and then (following 
Takahashi [29] and Gaudin [301, and using the notation of Tsvelick and Wiegmann [31]) 
forming the product n;=, over the imaginary parts of the strings, we obtain a set of equations 
for the centres A:: 

where 

and 

min(n, x )  if x = integer 

if x # integer. 
d(n,  x )  = 

(3.10) 

(3.11) 

(3.12) 
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In obtaining the above result, we use the lemmas 

Since equations (3.10) involve only the products of ses, it is usefi 
logarithm: 

where q,(A) are odd monotonically increasing functions defined by 

q.(A) =a+ilne.(A) -n<qfl(h)<z 

and are given by 

(3.13) 

(3.14) 

to take the 

(3.15) 

(3.16) 

m 

J$n = 1 Jia = N + M. - 2 min(m, n )  Mm . 
m=l 

(3.19) 

There are similar formulas for the case t* # 00. (See also [21,28].) We assume that the 
integers [J:] can be regarded as quantum numbers of the model: for every set [J;} in the 
range (3.18) (no two of which are identical). there is a unique solution [A:) (no two of 
which are identical) of equation (3.15). 

For definiteness, we henceforth consider the case that 2& is not an integer, and therefore, 
that d(n, 2&- I) = n in equation (3.15). Moreover, for later convenience, we further resnict 
f+ > 1 (See equation (4.10) below.) 

Evidently, in order to calculate the boundary S-matrices, we must investigate the low- 
lying excitations of the spin chain. However, as a useful warm-up exercise, we first consider 
the ground state. 

2' 



1034 

4. Ground state 

As discussed in [21], the ground state is an Si = 0 state characterized by a filled ‘Fermi 
sea’ of strings of length 1. That is, M I  = 5 and M,, = 0 for n > 1. (We consider the case 
that N is even.) We define the ‘counting’ function h(A) by 

M T Grisaru er a1 

so that the BA equations (3.15) for n = 1 are 

N 
’ 2 ‘  h(A&)=J,!  L Y = l , . . ,  - (4.2) 

We define the root density p ( A )  by 

1 dh(A) 
N d A ’  

p(A) = -- (4.3) 

In order to control terms of order 1/N, one must exercise care when passing from the sum 
in (4.1) to an integral. In particular, as shown in the appendix (see equation (A.12)). there 
is an additional term of order 1,”. Hence, the root density obeys the integral equation 

p(A) = 2a1 (A) - dA‘ [%(A - A’) + q ( A  +A‘)] p(A’) r 
1 

+ ~ [ a ~ ( A ) + f a z ( ~ . ) + a ~ + - i ( A . ) + a ~ _ - i ( h ) ]  A > O  (4.4) 

(plus terms that are of higher order in l/N), where 

In order to solve this equation, it is convenient to extend the domain of the root density 
to negative values of A, such that it is an even function of A. That is, we introduce the 
symmetric density p,(A) 

This density satisfies the linear integral equation 

1 
Ps = - a2 * Ps + (a, + a2 -k ay+-] + ay--1) 

where * denotes the convolution 
rm 

(4.7) 

(4.8) 
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The solution is readily found by Fourier transforms, and is given by 

1 
/%(A) = + y [ ~ ( h )  + J(h)  + J+(h) + J-(A)]  

where 

(4.9) 

(4.10) 

We calculate the ground-stak,energy density evac - E / N  with the help of equation (3.4). 
N .- Again exercising care in passing from a sum to an integral, we obtain (to order 1 / N )  

(4.1 1) 

where e 2  is the energy density of the infinite chain, and the surface energy f of the chain 
is given by 

~~ 

(4.12) 

Our results for the root.density (4.9) and the surface energy (4.12) agree with those of  [26].  

5. Excited states and S-matrix 

As shown by Faddeev and Takhtajan [25], the isotropic antiferromagnetic Heisenberg chain 
with periodic boundary conditions has spin-4 excitations (‘kinks’ or ‘spinons’). Following 
their approach, we consider the case that N is even, and therefore the number of such 
spinons is even. Hence, the lowest-lying excited states have two spinons, and there are four 
such states: the triplet (S = 1) and singlet (S = 0) states. 

For the open spin chain, the bulk terms in the Hamiltonian are SU(2)-invariant; hence, 
the excitations are still spin-; spinons, and there are four degenerate states with two spinons. 
However, the boundary terms break the SU(2) symmetry, and so the total spin is no longer a 
good quantum number. We now proceed to investigate the excited states, which we classify 
by their SL eigenvalue. (Excited states of the open spin-$ chain have also been studied 
in [9,28].) 
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5.1. Si = 1 state 

The Si = 1 state is characterized by two holes in the sea of strings of length 1, and no 
strings of greater length. That is, MI = 4 - 1 and M ,  = 0 for n > 1. The counting 
function h("(A) is given by 

M T Grisaru et a1 

(5.4) 

which is the density of roots plus the density of holest. We proceed as in the case of the 
ground state, being careful when passing from the sum to an integral (see equation (A.lZ)), 
and we obtain the integral equation 

u(')(h)  = 2al(h) - dh' [az(h - 2') + ~ ( h  + h')] ~ ( " ( h ' )  Lm 
ai(h)+az(h)+ay+-i(h)+ay_-i(h) 

(5.5) 

(plus terms that are of higher order in l / N ) .  The symmetric density c f ) ( h )  defined by 

is therefore given by 

@(A) = 2s(h) + hr(')(h) 

(5.6) 

(5.7) 

1 Since a(') depends also on the hole rapidilies. the notation a(')@, j.1 , i z )  would be more accurate. However. 
following usual practice, we suppress dependence on the hole rapidities. 
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where d ' ) ( A )  is given by 

r(')(h) = s(h) + J ( A )  + J+W + J-(A) + 
Z 

- L) + J ( A  + L)] (5.8) 
U= I 

(plus terms that are of higher order in l/N). The functions s(h) ,.J(h) , and &(A) are 
defined in equation (4.10). 

The energy density eN = E/N is given by 

(5.9) 

where e;;" is the ground-state energy density (4.11), and the spinon energy &(A) is given by 

&(A) = ns(A) (5.10) 

(plus terms that are of higher order in 1,"). 

conditions have the same energy, and have momentum p ( A )  given by [25] 
The spinons of the antiferromagnetic Heisenberg chain with periodic boundary 

p(h)  =tar-' sinh(nh) - 5~. (5.11) 

For the open spin chain, we define p(h)  by this equation. Note that 

_ -  dp - Zzs(h). 
dh 

(5.12) 

We come now to the calculation of the S-matrix. As already noted in section 1, our 
approach is a generalization of the Korepin-Andrei-Destri method [22, 231. From equations 
(5.4), (5.7) and (5.12), we obtain the relation 

Integrating with respect to A, we obtain 

(5.13) 

(5.14) 

where E ( X )  = sign x = x / l x [ .  Finally, we evaluate this expression at the spinon rapidity 
XI, recalling from~equation (5.2) that h(&) = jl .  Thus 

(5.15) 

On the other hand, let us recall the quantization condition (2.11) for two particles with 
factorized scattering on an interval of length L. For the spin chain, the number of spins N 
replaces L, and the 'particles' are in fact spin-; spinons of rapidities and i z .  Thus, we 
have 

&(l;l)N R I Z ~ ~ I  - i z )  Kl(ii , f - )  Rzl(h1 f h ~ )  Ki(h1 , f + )  = ~ 1 .  (5.16) 
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The bulk two-particle S-matrix is SU@)-invariant, and is given by [25] 

r(++;) r ( $ + i )  ( U - i P )  
r (a + L) r (=$ + 1) (A - i) 

R(h) = 
2 2  

(5.17) 

where Z and P are the 4 x 4 identity and permutation matrices, respectively. This matrix 
has the following form 

(5.18) 

with a(h) = b(A) + c(A). 

S-mabix is of the form 
The U(1) symmetry of the Hamiltonian's boundary terms implies that the boundary 

Our task is to determine the matrix elements a(A, C) and ,¶(A, C) explicitly. 
For the Sz = 1 state, the quantization condition (5.16) implies 

ei2p(Xi)N a(Ai - X2)a(X,, C-) a ( i i  + 12) w G i  , C+) = 1. 

In terms of the bulk (4(l)) and boundary (q) phaseshifts defined by 

U(A) = ei+"'(') a ( ~ ,  t) = e  i!di ,D 

respectively, the quantization condition (5.20) becomes 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

where m is an integer, and the total phaseshift @(I) is given by 

@(I)  = 4(')(ii - i z )  + @(')(ii + &) + q ( i i  ,e-) + ~ ( 1 1 ,  C+) . (5.23) 

Comparing our Bethe-ansatz result (5.15) with the quantization condition (5.22). we see 
that the total phaseshift Q(') is given by 

m 
@(l) = R [, dA E ( &  - A) r( ' ) (h) .  

It is convenient to evaluate the derivative of this expression 

(5.24) 
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In obtaining this result, we have used equation (5.8) for r( ' ) (h);  and we have remembered to 
differentiate also r(')(h) in equation (5.24). The bulk phaseshift @(')(A) given by equations 
(5.17). (5.18), (5.21) satisfies 

(5.26) 

In view also of equation (5.23), we see that.the boundary phaseshift q ( A ,  c*) satisfies 

' ") = i~ [s(A) + J(h)  + ZJ(2.L) + 2J*(h)] . (5.27) 

The phaseshift is now readily evaluated by expressing the right-hand side in terms of the 
Fourier transform, and using the identity 

dh 

and also the duplication formula for the gamma function, 

2 2 - ' r ( ~ )  r(z+;) = ~ f r ( 2 ~ ) .  

The result forthe boundary S-mlrix element~(up to a multiplicative constant) is 

~ ( 1 ,  (*) = eiv(**t*) . .  . .  

(5.28) 

(5.29) 

(5.30) 

5.2. SL = - I  stnte 

To determine the remaining element @(A, e )  of the boundary S-matrix, we consider the 
Si = -1 state. This state is most easily described by changing the pseudovacuum. Hence, 
instead of working with the states (3.1), we now work with 

C ( h l )  C(h*)" .C(hM) w- (5.31) 

where o- is the ferromagnetic vacuum state with all spins down, 

&?(A) w- = 0. (5.32) 

Sklyanin has shown [4] that {he] satisfy the same BA equations (3.3) as before, except for 
the replacement of by -&. The energy eigenvalues are given by the same expression 
(3.4), and the SL eigenvalues are now given by 

Sz = M - f . (5.33) 

The SL = -1 state now consists of two holes in the sea of strings of length 1, and no 
strings of greater length; i.e. MI = f - 1 and M, = 0 for n > 1. The calculation of the 



1040 

density of roots plus holes is exactly the same as for the Sz = 1 state, except that we must 
track the change f+ -+ -&. We,find that the density is given by equations (5.7) and (5.8). 
except that .&(A) is now given by 

M T Grisaru et a1 

(5.34) 

Moreover, the quantization condition (5.16) and the form (5.18), (5.19) of the S-matrices 
imply 

(5.35) ei2p(ii)Na(j.l - j.2)p(j.l ;6) a& + j.2) p(i l .  t+) = I .  

Introducing the phaseshifi +(A,  6 )  by p(A, e )  = exp(i@(A, t)), we find that +(A, t+) 
obeys equation (5.27), with Ji given by equation (5.34). We conclude that the element 
p(A , 5) of the boundary S-matrix is given (up to a multiplicative constant) by 

(5.36) 

where a(A, e*) is given by equation (5.30). This completes the derivation of the result 
(1.7), (1.8) for the boundary S-matrix. 

5.3. Sz = 0 states 

We have already succeeded to determine the boundary S-marcix. Nevertheless, a goodcheck 
on this result and on the general formalism is provided by analyzing the SL = 0 states. In 
particular, with the help of expressions for the densities, we can determine the 'momentum' 
p(j.1) of a spinon in terms of its deviation from the free-particle value. Substituting this 
result, as well as the known results for R(A) and K ( A ,  t*), into the quantization condition 
(5.16), we obtain a consistency condition. 

To this end, we consider the Sz = 0 state consisting of two holes in the sea of strings 
of length 1, and also one string of length 2; i.e. MI = % - 2, M2 = 1, and M,, = 0 for 
n > 2. For .& -+ 63, this is the spin-singlet (S = Sz = 0) state. The counting function 
h(O)(A) is given by (see the BA equation (3.15) with n = 1) 

- q~ (A - LO) - q3 (A - 10) - 41 (A + Ao) - q3 (A + A d  (5.37) 

where A0 = A: is the position of the centre of the string of length 2. The density &"(A) 
(defined analogously as in equation (S.4)) obeys the integral equation 

U-"(.\) = 2a1 (A) - dh' [a& -A') +a2@ + A')] &')(A') 1- 
a10.)-taz(~)+a~+-,(A)+a~--1(A) 
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(plus terms that are of higher order in l / N ) .  We conclude that the symmetric density uio)(h) 
(defined analogously as in equation (5.6)) is given by 

u:O)(h) = &(A)  + +r(O)(h) (5.39) 

where 

r(O)(h) = r ( ' ) ( i )  - [al (A - ho) + al ( A  + AO)] (5.40) 

and r(')(h) is given in equation (5.8). 

positions 
n = 2  

(2N + I)qz(ho) + qzzi;(ho) + qq+-z(ho) +@-( io )  + @.-z(ho)  

The position ho of the centre of the string of length 2 can be determined in terms of the 
and XZ of the holes. We accomplish this using the BA equations (3.15) with 

(We remind the reader ,that, in tems of the notation in equation (3.13, A0 is in fact A:.) 
Passing again from the sum to an integral, and making use of the result (5.39), we are led 
to the constraint 

eq--z(ho) eq--a(ho) (5142) 

This is considerably more complicated than the corresponding constraint for the periodic 
chain, which implies ' = ();.I + xz)/2.  

-);.I) e i ( h  - );.z) ei(h0 + XI) el(& + $2) = 1 .  

"odic) 

For the case e+ = CO, the constraint becomes 

el(ho-j.1) el(ho-j.2) e l ( A o + L l )  e l ( h o + L ) = 1 .  (5.43) 

In addition to the solution ho = Ot, this constraint has the.solution 

A0 = /qzGG. (5.44) 

For # 00, equation (5.42) for A.o is not difficult to solve. Nevertheless, the solution is 
given by a rather cumbersome expression, which we shall not present here. 

One can verify that this Si = 0 state has the same energy (5.9), (5.10) as the .Sz = 1 
state. We now express the spinon 'momentum' p(&)  in terms of its deviation from the 
free-particle value. In analogy with the S; = 1 case, we have 

(5.45) 

Substituting for r("(h) the expression (5.40). we obtain the result 

2 n  - 1 
N 

(5.46) 

t The restriction (3.8) can presumably be strengthened to Re (A.) > 0, and thus, we discard this so1u:lion. 



1042 

where @ ( I )  is given by equation (5.24). 
We turn now to the quantization condition. For the Si = 0 states, the quantization 

condition (5.16) leads to a 2x2 matrix equation. The two eigenvalues of this matrix are pure 
phases. (Since the matrix elements of R(h) and K ( h ,  &) are known, these eigenvalues can 
be computed explicitly. However, for # CO, the actual expressions for the eigenvalues 
are cumbersome, and we do not give them here.) We consider the eigenvalue exp i@(O) 
which for &. + CO conesponds to the spin-singlet (S = Sz = 0) statet. Hence, the 
quantization condition implies 

M T Grisaru et a1 

,i2p&)Ndd0' = 1 , (5.47) 

Substituting the result for 2p(Xl) given in equation (5.46) into equation (5.47), we 
obtain the consistency condition 

(5.48) ej(~o-o"') 
= e 1 6 1  - 10) el (7.1 + AO) 

where XI  and X2 are arbitrary, and ho is a solution of equation (5.42). 
This relation is readily verified for & = 00. Indeed, for this case, the boundary S-matrix 

is proportional to the identity matrii (or(A, 00) = p ( A ,  00)). The 2 x 2 matrix equation 
which foIlows from the quantization condition is readily diagonalized, and the phaseshift 
@(O) is found to be 

@CO) = @ " ' ( X l - X 2 ) + p ( ~ l + X 2 ) + 2 ~ ( ~ l , w ~ .  ' ' (5.49) 

Here @("(A) is the singlet phaseshift 

(5.50) 

where d(l)(A) is the triplet phaseshift. (See equations (5.17), (S.18), (5.21).) Since 

@(I) = +(')(XI - Xz) +$J(I)(Xl + X2) + 2q& , CO) (5.51) 

it follows that 

The relation (5.48) now follows from the algebraic identity 

This identity is true for arbitrary values of 
We have also explicitly verified the formula (5.48) for the case e- = CO, E+ # CO, and 

presumably it is true in general. This equality provides a non-trivial consistency check of 
the bulk and boundary S-matrices and of the general formalism. 

t we impiicidy assume that d q  is a wntinuous function of<*. 

and i z ,  where h is given by (5.44). 
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6. Discussion 

We have demonstrated how the boundary S-matrix for the open Heisenberg chain with 
boundary magnetic fields can be calculated directly from the Bethe-ansatz equations. As 
yet, this is the only quantum-mechanical calculation of the boundary S-matrix. We have 
restricted our attention in this paper to the case that the bulk terms are SU(2) inv"iant and 
the boundary terms are U(1) invariant only for the sake of simplicity. We see no difficulty in 
extending our calculations to the case that both the bulk terms and the boundary terms are 
only U(1)  invariant. However, the case where the boundary terms have no continuous 
symmetry cannot be undertaken by this approach until the corresponding Bethe-ansatz 
solution is found [ 111. 

The analysis of the Si = 0 states for the open chain differs significantly from that of the 
periodic chain. Indeed, for the open chain, we have seen that the position of the centre of 
the shing of length 2 is a complicated function of the hole positions ,i~ and LZ (as well as 
the boundary parameters &); while for the periodic chain, the centre of the string is located 
midway between the two holes. Naively, one might worry that this leads to a breakdown of 
factorization. However, we have seen that factorization is maintained by virtue of certain 
non-trivial identities. We expect that a similar situation holds for the periodic chain with 
four or more holes. 
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Appendix 

We derive in this appendix a formula for approximating a sum of the form 

by an integral, to order 1/N, for Iarge~N. Here g(A) is an arbitrary function of ?. which 
goes to 0 for A + W. Furthermore, {AA) are solutions of the BA equations (3.15) with 
n = 1. ma t  is, 

h(AA) = .J: U = 1 , .  . . , M I  (A.2) 

where h(A) is the appropriate counting function, and M I  - N/2. There are two key points 
in our discussion: (1) we use the Euler-Maclauin formula for approximating sums by 
integrals; and (2) we use the fact that the solution A = 0 of the BA equations is excluded. 
The Euler-Maclaurin formula has been widely used ,to calculate finite-size corrections in 
Bethe-ansatz systems. (See, e.g., [26,321.) 

Let us consider the case that there are U holes, with rapidities &] 

h(,ia)=.fe a = 1 ,  ...,U. (A.3) 
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Wedenotetheunionofthesets[h&]and[ia}by[A,],withor = 1, ..., I,whereI =Ml+u.  
Similarly, we denote the union of the sets ( J i l  and (&I by ( jJ.  Evidently 

64.4) 

0. 

M T Grisaru et a1 

k ( A a )  = j ,  = a  a = I ,  ..., I. 
As was noted in equation (3.8), An > 0. Nevertheless, it is useful to introduce A. 
Since k ( 0 )  = 0, the corresponding integer is j o  = 0. 

Instead of evaluating the sum (A.l) directly, it is convenient to first evaluate the sum 

We approximate this sum using the Euler-Maclaurin formula (see, e.g., [33]) 

Indeed, transforming to a sum over equidistant points by means of the change of variables 
h(h) = j ,  we obtain 

(plus terms that are of higher order in l/N). Introducing the density o(h) 

1 dh(A) 
u(h) = -- 

N dh 
we obtain 

By the definition of {Ae], 

(A.lO) 

Therefore, 

Making the approximation A, zx 00 introduces an error which is higher order in 1/N. We 
conclude that the sum (A.l) is given by 

(plus terms that are of higher order in l /N).  The presence of the last term -$g(O) should 
be noted. 
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